
The SVT experience and
possible Si-upgrades for STAR

l The SVT during year-2 running

l A large Silicon tracker for STAR

l A forward Silicon tracker for STAR

R. Bellwied,  RHIC WorkshopR. Bellwied,  RHIC Workshop



The SVT in STAR
Construction
in progress
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in progress

Connecting
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Connecting
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The SVT in STAR
The final device….The final device….

… and all its

connections
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STAR-SVT characteristics

l 216 wafers (bi-directional drift) = 432 hybrids

l 3 barrels, r = 5, 10, 15 cm, 103,680 channels, 13,271,040 pixels

l 6 by 6 cm active area = max. 3 cm drift, 3 mm (inactive) guard area
l max. HV = 1500 V, max. drift time = 5 µs, (TPC drift time = 50 µs)

l anode pitch = 250 µm, cathode pitch = 150 µm

l SVT cost: $7M for 0.7m2 of silicon

l Radiation length: 1.4% per layer

l 0.3% silicon, 0.5% FEE (Front End Electronics),

l 0.6% cooling and support. Beryllium support structure.
l FEE placed beside wafers. Water cooling.
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A typical pattern on a hybrid for a
        central Au-Au event

l central event: inner layer: ~15 hits/hybrid (middle: 8 hits, outer: 5 hits)
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Problem: ‘Common Mode Noise’

l about 20% of the detector shows strong oscillations in raw ADC values

l only a 30% noise increase, data can still be recorded in the noisy
hybrids, but zero-suppression can not eliminate noise. Only offline
analysis can eliminate noise. Data volume problem.
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Noise stable in time and location

l          noise pattern in the outer SVT barrel over three days
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Problem: ‘Common Mode Noise’

l most likely a shielding problem, affects half-ladders

l varies from event to event but not from anode to anode

l data still useable, can be easily subtracted in offline analysis

l can not be subtracted during data taking (zero-suppression)
l data volume in SVT increases six fold from 0.5 to 3 MByte/event

l STAR data volume increases by 30%, slows down data taking

l when the noise level rises, then the threshold requirement for
zero-suppression leads to small clusters. Cluster finder has to
be optimized for small cluster (down to single anode clusters).
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How do we know the data are good ?

l Test (a): TPC independent primary vertex reconstruction

R. Bellwied, RHIC Detector Workshop, November 2001R. Bellwied, RHIC Detector Workshop, November 2001



How do we know the data are good ?

l Test (b): TPC track to SVT hit matching
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SVT Operating Experiences (I)

l after electronics assembly: 99.5% active channels

l after mechanical assembly: 97.5% active channels

l after full integration: 97% active channels

l loss of channels in mechanical assembly.
Multiplexing in support lines is necessary but
dangerous (e.g. lost 1.5% of channels due to a single
HV line disconnect)
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l common mode noise is a problem, good shielding is
very important, avoid ground loops

l RDO contributes more noise than expected, make
sure that RDO (off-detector) is well shielded as well

l radiation not a big problem for us. Detector is very
robust and can be operated during beam fills and
magnet quenches

l under-pressure water cooling system is difficult to
reliably operate, but detector temperature is very
stable
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SVT Operating Experiences (II)



Forward Physics in STAR

l Charged hadron spectra (pt and rapidity)
between η = 2.5-4.0 for AA and pA collisions.

l Separate peripheral collision program
l Important jet physics program in pp and pA.
l V0 reconstruction
l Better phase space for D-meson mass

reconstruction through charged hadron channel

R. Bellwied, November 2000R. Bellwied, November 2000



  New Physics Goals

l Measurements in the baryon-dense regime
l In central collisions the forward region will be baryon-rich

(high baryochemical potential). Exotic phenomena, e.g.
centauro-like events and strangelets, are preferably
produced in such an environment.

l this requires measurement of pid, momentum and Z/M
ratio with silicon detectors.

l production of light nuclei and antinuclei carries information
of baryochemical potential and of production mechanism in
baryon-rich region compared to baryon-poor mid-rapidity
region.

l anti-proton suppression due to increased annihilation ?
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  New Physics Goals (2)

l Measurements in peripheral collisions
l study coherent collective effects on nuclei like diffractive

and double-pomeron exchange.
l study exotic meson production for soft double pomeron

exchange.
l study pomeron structure function for hard pomeron

exchange with meson states in central rapidity region
(requires to measure events with rapidity gap larger than
two units).

l study exotic resonance production in two photon physics
for large Z nuclei.
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Requirements / Technologies

l Requirements:
l excellent position resolution, good energy resolution
l good pattern recognition
l operate at room temperature
l cost effective, need large coverage (> 1m2)

l Technologies:
l Si Pixel (too expensive ??)
l CCD (too difficult ??)
l Si Drift (magnetic field in wrong direction ??)
l Si Strip (see BABAR, NLC proposal, STAR 4th layer)
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Strawman / Potential layouts

l Strawman technology = Silicon Strip
l double-sided Silicon Strip detector, 100 micron pitch
l 5 by 5 cm active area, 1000 channels/wafer
l 300+320 wafers (see layout below)
l 0.8 and 0.75 m2 of active Silicon, respectively

l potential location:in front of FTPC
l 5 layers (z=60,80,100,120,140 cm ; r=10,15,20,25,30 cm)
l η = 2.3-4.0 (320,000 channels)

l potential location: behind FTPC
l 5 layers (z=350,375,400,425,450 cm ; r=20 cm all planes)
l η = 3.5-5.0 (300,000 channels)

R. Bellwied, November 2000R. Bellwied, November 2000



     Potential Layouts

n two ‘stations’ in front and behind the FTPC

n develop a quasi-circle

n use  square detectors or wedges ?

n use single-sided Si

n have FEE on disk edges

n use TAB Technology ?
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     TAB technology

n elegant solution for STAR-SSD developed by THALES
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   SSD-TAB technology

n SSD solution almost perfect for forward
strip detector

n FEE folds to behind the active layer, RDO
on the layer edges

n could use double-sided strip detector,
ALICE frontend chip, hybrids, bus cables,
multiplexer, and ADC boards

n readout pitch too fine (only readout every
2nd strip ? = 190 micron pitch)
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        Occupancy

n we assume around 1000 charged particles in
η=2.5-4

n first layer before FTPC= 16% occupancy

n last layer before FTPC = 1.4% occupancy

n we could vary pitch for different layers

n occupancy not perfectly homogenuous, but
close (according to FTPC measurements)
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Cost / Manpower / Schedule

l Cost Estimate
l around $ 4 Million for coverage in front and behind the

FTPC (based on 4th layer and NLC cost estimates)

l Manpower
l need a crew about the size of the SVT project
l same level of Instrumentation involvement

l Schedule
l the earlier the better
l if proven technology is used we should be able to install by

2004
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STAR Upgrade (for central tracker)

l Silicon device to replace TPC, Technologies: drift or strip
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            Layer Radii    Half-lengths
            -----------         ------------
             25.00 cm        25.00 cm
             50.00 cm        50.00 cm
             75.00 cm        75.00 cm
            100.00 cm       100.00 cm
            125.00 cm       125.00 cm

       

Five layers of silicon drift detector
Radiation length / layer = 0.5 %
sigma_rphi = 7 µm, sigma_rz = 10 µm
44 m2 Silicon
Wafer size: 10 by 10 cm
 # of Wafers: 4500 (incl. spares)
# of Channels: 3,388,000 channels , (260 µm
pitch)

Five layers of silicon strip detector
Radiation length / layer = 0.5 %
sigma_rphi = 10 µm, sigma_rz = ? µm
88 m2 Silicon
Wafer size: 10 by 10 cm
 # of Wafers: 9000 (incl. spares)
# of Channels: 27,104,000 channels , (65 µm
pitch)

       



Silicon Drift Detector Features

l Mature technology.
l <10 micron resolution achievable with $’s

and R&D. Easy along one axis (anodes).
l <0.5% radiation length/layer achievable if

FEE moved to edges.
l Low number of channels translates to low

cost silicon detectors with good resolution.
l Detector could be operated with air cooling

at room temperature
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 R&D for Large Tracker Application

l Improve position resolution to 5µm
l Decrease anode pitch from 250 to 100µm.

l Stiffen resistor chain and drift faster.

l Improve radiation length
l Reduce wafer thickness from 300µm to 150µm

l Move FEE to edges or change from hybrid to SVX

l Air cooling vs. water cooling

l Use 6in instead of 4in Silicon wafers to reduce #channels.
l More extensive radiation damage studies.

l Detectors/FEE can withstand around 100 krad (γ,n)

l PASA is BIPOLAR (intrinsically rad. hard.)
l SCA can be produced in rad. hard process.
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 Simulation Studies

l Momentum resolution
l Present: 20 µm pos.res.,

1.5% rad.length/layer,
Beampipe wall thickness:
2 mm

l Future: 5 µm pos.res.,
0.5% rad.length/layer,
Beampipe wall thickness:
0.5 mm

l Two Track Resolution.
l Present: 500 µm
l Future: 200 µm
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 Simulation Studies (cont.)

l Momentum resolution
l Modify Position

Resolution
l Modify Radiation length:

Si thickness, Electronics
l Modify Beam Pipe Wall

Thickness
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Summary
l The STAR experience shows that a Silicon based Vertex Tracker can

operate successfully in the RHIC environment.
l The radiation doses and the occupancy are within expectations.
l Certain startup problems have to be expected and anticipated.
l The difficulty in accessing a ‘nested’ detector has to be stressed. The

success rate for repair remains to be seen

l STAR is considering a Silicon disk tracker in forward direction,
presently based on strip technology

l STAR is potentially considering a large Silicon tracker in case the TPC
does not perform well at high luminosities. For that scale only strip and
drift detectors seem to be feasible choices. Such a device would take
many years to build and would require a construction budget of about
$25-30 Million.
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